焦耳是什么的单位_焦耳定律焦耳生平焦耳主要贡献

焦耳是什么的单位_焦耳定律焦耳生平焦耳主要贡献

基本信息编辑

中文名

焦耳

外文名

Joule

单位

J

人物

詹姆斯·普雷斯科特·焦耳

学科

物理学

简称

相关人物

詹姆斯·普雷斯科特·焦耳

焦耳编辑

物理学单位

焦耳(简称焦,符号为J),是能量和做功的国际单位。1焦耳能量相等于1牛顿力的作用点在力的方向上移动1米距离所做的功。

符号J为纪念英国物理学家詹姆斯·普雷斯科特·焦耳而命名。1焦=1牛·米,也等于1瓦的功率在1秒内所做的功,1焦=1瓦·秒。

目录

1换算2牛顿米3焦耳热

4焦耳定律5焦耳生平6焦耳主要贡献

换算

编辑

焦耳–卡路里:

1千卡(KCAL)=4.184千焦耳(KJ)

1千焦耳(KJ)=0.239千卡(KCAL)

1卡=4.184焦耳

1焦耳=0.239卡

焦耳–瓦特:

1焦耳(J)=1瓦特×秒(W·s)

1度(1kw·h)=3.6×10^6焦耳(J)

焦耳–牛顿:

1焦耳(J)=1牛顿×米(N·m)

牛顿米

编辑

虽然在单位方面,表示焦耳为牛顿·米是正确的,为了避免与力矩单位发生混淆,通常不鼓励这种用法。力矩与能量的物理意义完全不同。

焦耳是什么的单位_焦耳定律焦耳生平焦耳主要贡献

焦耳

焦耳热

编辑

以毛细管电泳为例:毛细管电泳需要电场做功,有电场做功就会产生热量,这就是焦耳热。这种焦耳热视其程度不同,可形成不同的温度梯度,甚或引起溶液对流、出现气泡等。气泡会使电泳中断,而温度梯度和对流会大幅度降低分离效率。在传统电泳中,为了避免对流,采用各种难流动或不流动物质作为电泳支持介质,如纤维素和凝胶等,这实际上是一种“堵”的方法。与此相反,在毛细管电泳中则采用消除“源”的策略,即通过缩小毛细管内径来加快散热的速度,以达到克服焦耳热效应的目的。可以预见,不同毛细管的散热能力肯定各有差异,其分离效果也必然会各有差异,所以如果能够预先推出关于毛细管在电泳过程中的散热性能或温度分布,将会十分有用。

焦耳定律

编辑

焦耳定律是指电能和热能的转化关系,它是英国物理学家焦耳在1841年发现的。焦耳定律的具体内容是:电流通过导体所产生的热量与电流的平方成正比,与导体的电阻成正比,与通电时间成正比。

焦耳定律的数学公式是Q=I²Rt,其中Q表示热量,单位是焦耳;I表示电流,单位是安培;R表示电阻,单位是欧姆;t表示时间,单位是秒。这个公式适用于所有电流热效应的计算。

焦耳在用电阻丝给水加热的时候发现,设置不同的参数,电阻丝产生的热量就不一样,水的温度也就不同。他决定对其展开定量研究。通过大量的实验,焦耳最终发现了焦耳定律。焦耳定律为电路照明设计、电热设备设计和计算电力设备的发热提供了依据。

在纯电阻电路中,以焦耳定律的公式为依据,还能推导出其他的计算电路热量的公式。但是需要注意的是,焦耳定律的公式适用于所有电路,而推导出来的公式只适用于纯电阻电路。

国际单位制用焦[耳](J)表示功或能的单位。1焦耳等于在1牛力作用下,在该力的方向上运动1米所做的功;在电学中等于1W・s,即1A的电流流过1Ω的电阻在1秒内释放的能量。

焦耳生平

编辑

焦耳(1818-1889)英国物理学家。1818年12月24日,生于索尔福。父亲是酿酒厂的厂主。焦耳从小体弱不能上学,在家跟父亲学酿酒,并利用空闲时间自学化学、物理。他喜欢电图2-20焦耳学和磁学,对实验特别感兴趣。焦耳一生都在从事实验研究工作,在电磁学、热学、气体分子动理论等方面均作出了卓越的贡献。焦耳是靠自学成才的杰出的科学家。1840年12月,焦耳研究电流的热效应,发现了焦耳定律。焦耳对物理学的主要贡献,是钻研并测定了热和机械功之间的当量关系,导致建立能量转化和守恒定律。1872年、1887年,焦耳担任英国科学促进协会主席。1889年10月11日,焦耳在英国曼彻斯特近郊的沙弗特逝世。

焦耳主要贡献

编辑

焦耳的主要贡献是他研究了热和机械功之间的当量关系。焦耳最初的研究方向是电磁机,他想将父亲的酿酒厂中应用的蒸汽机替换成电磁机以提高工作效率。1837年,焦耳制成了用电池驱动的电磁机,但由于支持电磁机工作的电流来自锌电池,而锌的价格昂贵,用电磁机反而比用蒸汽机成本高。焦耳虽然没有达到最初的目的,但他从实验中发现了电流可以做功的现象。

为进一步探索电流热效应的规律,焦耳把环形线圈放入装水的试管内,测量不同电流强度和电阻时的水温。通过这一实验,他发现导体在一定时间内放出的热量与导体的电阻及电流强度的平方之积成正比。此后不久,俄国物理学家楞次公布了他的大量实验结果,进一步验证了焦耳关于电流热效应结论的正确性。因此,该定律被称为焦耳-楞次定律。

在完成电流热效应的研究之后,焦耳又进行了功与热量的转化实验。焦耳认为,自然界的能量是不能消灭的,消耗了机械能,总能得到相应的热能。因此,做功和传递热量之间一定存在着确定的数量关系,即热功当量。1843年,焦耳又设计了一个新实验想找到这一关系。他将一个小线圈绕在铁芯上,用电流计测量感生电流,把线圈放在装水的容器中,测量水温以计算热量。这样在没有外界电源供电的情况下,水温的升高只是机械能转化为电能、电能又转化为热的结果。这个实验使焦耳想到了机械功与热的联系,经过反复的实验、测量,焦耳测出了热功当量,即1千卡的热量相当于460千克米的功。然而,此结果并不精确,焦耳又进行了更精确的实验。1847年,焦耳设计了更巧妙的实验,他在量热器里装了水,中间安上带有叶片的转轴,然后让下降重物带动叶片旋转,由于叶片和水的摩擦,水和量热器都变热了。根据重物下落的高度,可以算出转化的机械功;根据量热器内水升高的温度,就可以计算水的内能的升高值。把两数进行比较就可以求出热功当量的准确值来。随后,焦耳还用鲸鱼油或水银代替水来做实验,他用各种方法进行了四百多次实验经过更精确地测量,得到的热功当量值为1卡=4.15焦耳,非常接近目前采用的值1卡=4.184焦耳。在当时的条件下,能做出这样精确的实验来,是非常不容易的。焦耳准确地测定了热功当量,进一步证明了能的转化和守恒定律是客观真理。这一定律的确定,宣告了制造“永动机”的幻想彻底破灭。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 787013311@qq.com 举报,一经查实,本站将立刻删除。
(0)
上一篇 2022-08-19 08:21:31
下一篇 2022-08-19 08:24:15

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注